MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .


 / = [          ] ,     [  ]    .

 / = [          ] ,     [  ]    .


Em físicaa equação de campo de Einstein ou a Equação de Einstein é uma equação na teoria da gravitação, chamada relatividade geral, que descreve como a matéria gera gravidade e, inversamente, como a gravidade afeta a matéria. A equação do campo de Einstein se reduz à lei de Newton da gravidade no limite não-relativista, isto é, a velocidades baixas e campos gravitacionais pouco intensos.

Na equação, a gravidade se dá em termos de um tensor métrico, uma quantidade que descreve as propriedades geométricas do espaço-tempo tetradimensional. A matéria é descrita por seu tensor de energia-momento, uma quantidade que contém a densidade e a pressão da matéria. Estes tensores são tensores simétricos 4 x 4, de modo que têm 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem a 6. A força de acoplamento entre a matéria e a gravidade é determinada pela constante gravitacional universal.

Solução da equação de campo de Einstein

Uma solução da equação de campo de Einstein é certa métrica apropriada para a distribuição dada da massa e da pressão da matéria. Algumas soluções para uma situação física dada são com as que se seguem.

Distribuição de massa esférica simétrica e estática

A solução para o vazio ao redor de uma distribuição de massa esférica simétrica e estática é a métrica de Schwarzschild e métrica de Kruskal-Szekeres. Se aplica a uma estrela e conduz à previsão de um horizonte de eventos além do qual não se pode observar. Prevê a possível existência de um buraco negro de massa dada  da qual não pode ser extraída nenhuma energia, no sentido clássico do termo (isto é, não é válido para o domínio da mecânica quântica - ver radiação de Hawking).

Massa de simetria axial em rotação

A solução para o espaço vazio ao redor de uma distribuição de massa de simetria axial em rotação é a métrica de Kerr. Se aplica a uma estrela que gire e conduz à previsão da existência possível de um buraco negro em rotação de massa dada  e momento angular , do qual a energia rotacional pode ser extraída.

Universo isotrópico e homogêneo

geometria geral do universo é determinada de acordo com as equações de Friedmann e o parâmetro cosmológico Ômega se este é maior, menor ou igual a 1. De cima para baixo: um universo esférico ou fechado com curvatura positiva, um universo hiperbólico com curvatura negativa e um universo plano com curvatura nula.

A solução para um Universo isotrópico e homogêneo, totalmente com densidade constante e de uma pressão insignificante, é a Métrica de Friedmann-Robertson-Walker. Se aplica ao Universo em sua totalidade e conduz a diversos modelos de sua evolução que predizem um Universo em expansão. Em 2016, uma equipe de cosmólogos mostrou que o universo é "isotrópico", ou o mesmo, não importa maneira que é observado: Não há eixo de rotação ou qualquer outra direção especial no espaço.[1]

Forma matemática da equação do campo de Einstein

Detalhe de uma parede do Museu Boerhaave, em Leiden, em que aparecem as equações de campo de Einstein e uma representação artística de uma lente gravitacional.

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

 
 / = [          ] ,     [  ]    .

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

 / = [          ] ,     [  ]    .

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 
 / = [          ] ,     [  ]    .

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein

A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

 / = [          ] ,     [  ]    .

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

 
 / = [          ] ,     [  ]    .

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell


Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

 / = [          ] ,     [  ]    .

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

 / = [          ] ,     [  ]    .




Na física, as equações de Maxwell no espaço-tempo curvo governam a dinâmica do campo eletromagnético no espaço-tempo curvo [1] (onde a métrica não pode ser a métrica de Minkowski) ou quando se usa um sistema , não necessariamente cartesiano, arbitrário de coordenadas. Estas equações podem ser vistas como uma generalização das equações de Maxwell, que são normalmente formuladas nas coordenadas locais[nota 1] do espaço-tempo plano. Entretanto porque a relatividade geral dita que a presença de campos eletromagnéticos (ou energia/matéria em geral) induzem curvatura do espaço-tempo, as equações de Maxwell no espaço-tempo plano devem ser vistas como uma aproximação.

Campo electromagnético

O campo electromagnético[2] é um tensor antissimétrico covariante de classe 2,[3] que pode ser definido em termos de potencial electromagnético por

 / = [          ] ,     [  ]    .

Para verificar que esta equação é invariante, podemos transformar as coordenadas (tal como descrito no tratamento clássico de tensores)

 / = [          ] ,     [  ]    .

Esta definição implica que o campo electromagnético satisfaz

 / = [          ] ,     [  ]    .

que incorpora a lei de indução de Faraday e lei de Gauss[4] para o magnetismo. Isto é demonstrado por

 / = [          ] ,     [  ]    .

Embora parece ter 64 equações em Faraday-Gauss, elas realmente reduzem-se a apenas quatro equações independentes .[5] Utilizando a antisimetria do campo electromagnético pode-se reduzir a uma identidade (0 = 0) ou tornar redundante todas as equações, com excepção para aqueles com λ, μ, ν = 1,2,3; ou 2,3,0; ou 3,0,1; ou 0,1,2.

A equação de Faraday-Gauss é por vezes escrita

 / = [          ] ,     [  ]    .

onde o ponto e vírgula indica uma derivada covariante, vírgula indica uma derivada parcial, e colchetes indicam anti-simetrização (Veja Gregorio Ricci-Curbastro).[6] A derivada covariante do campo eletromagnético é

 / = [          ] ,     [  ]    .

onde Γαβ γ é o símbolo de Christoffel que é simétrico em seus índices mais baixos.





ação de Einstein–Hilbert ou ação de Hilbert na relatividade geral é uma ação que torna eficiente as equações de campo de Einstein através do princípio da mínima ação. Segundo a convenção de sinal da teoria da relatividade, esta ação pode ser escrita como:[1]

 / = [          ] ,     [  ]    .

onde  é o determinante do tensor métrico é o escalar de curvatura de Ricci, e , onde  é a constante gravitacional de Newton e  é a constante da velocidade da luz no vácuo. A integral é dada sobre o espaço-tempo.

Esta ação foi inicialmente proposta por David Hilbert em 1915.

Comments